
Integral Apollonian Packings

Peter Sarnak

Abstract. We review the construction of integral Apollonian circle packings. There are a num-
ber of Diophantine problems that arise in the context of such packings. We discuss some of
them and describe some recent advances.

1. AN INTEGRAL PACKING. The quarter, nickel, and dime in Figure 1 are placed
so that they are mutually tangent. This configuration is unique up to rigid motions. As
far as I can tell there is no official exact size for these coins, but the diameters of 24, 21,

Figure 1.

and 18 millimeters are accurate to the nearest millimeter and I assume henceforth that
these are the actual diameters. Let C be the unique (see below) circle that is tangent
to the three coins as shown in Figure 2. It is a small coincidence that its diameter is
rational, as indicated.

C

d = diameter
d2 = 21 mm

d3 = 24 mm

d1 = 18 mmd4 = 504 mm
157

RATIONAL!

Figure 2.
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What is more remarkable is that if we continue to place circles in the resulting
regions bounded by three circles as described next, then all the diameters are rational.
Since the circles become very small, so do their radii, and it is more convenient to work
with their curvatures, which are the reciprocals of the radii. In fact in this example it
is natural to scale everything further by 252, so let us take 252 mm as our unit of
measurement, and then for each circle C let a(C) be the curvature of C in these units.
With this rescaling, all of the curvatures turn out to be integers.

In Figure 3 our three tangent circles are displayed together with the unique outer
mutually tangent circle. The a(C) for each circle is depicted inside the circle. Note that
the outer circle has a negative sign indicating that the other circles are in its interior (it
is the only circle with a negative sign).

–11

Figure 3.

At the next generation we place circles in each of the 4 lune regions, obtaining the
configuration in Figure 4 with the curvatures a(C) as indicated. For the 3rd generation
we will fill in the 12 new lunes as in Figure 5. Continuing in this way ad infinitum
yields the integral Apollonian packing P0 depicted in Figure 6.
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Figure 4.
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Figure 5.
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Figure 6.

My aim in this paper is first to explain the elementary plane geometry behind the
above construction, and then to discuss the Diophantine properties of the integers ap-
pearing as curvatures in integral Apollonian packings such as P0. As with many prob-
lems in number theory, the basic questions here are easy to state but difficult to resolve.
There are many papers in the literature dealing with Apollonian packings and their gen-
eralizations. However, the Diophantine questions are quite recent and are raised in the
lovely five-author paper [10]. The developments that we discuss below are contained
in the letter and preprints [19], [14], [8], [9], [2], and [1].

In Section 2 we review (with proofs) some theorems from Euclidean geometry that
are central to understanding the construction of P0. This requires no more than high
school math. The proofs of the results in later sections involve some advanced concepts
and so we only outline these proofs in general terms. However, the notions involved
in the statements of all the theorems are ones that are covered in basic undergraduate
courses, and it is my hope that someone with this background can follow the discussion
to the end. In Section 3 we introduce the key object A, which is the symmetry group
of P0. It is a group of 4 × 4 integer matrices that is deficient in a way that makes its
study both interesting and challenging. Section 4 deals with the basic analytic question
of counting the number of circles in P0 when they are ordered by their curvatures.
Sections 5 and 6 are concerned with Diophantine questions such as which numbers
are curvatures of circles in P0, a possible local-to-global principle, and the number of
circles whose curvatures are prime numbers.

2. APOLLONIUS’S AND DESCARTES’ THEOREMS. First some notation. P
denotes an integral Apollonian packing and C a typical circle in P . Denote by r(C)
its radius and by a(C) = 1/r(C) its curvature. Let w(C) be the generation n ≥ 1 at
which C first appears in the packing. Thus for n > 1, there are 4 · 3n−2 new circles that
are placed at the nth generation.

Apollonius’s Theorem. Given three mutually tangent circles C1, C2, C3, there are
exactly two circles C and C � tangent to all three.

Our proof is based on the use of motions of the plane that take circles to circles
(we allow a straight line as a circle with “infinite” radius) and preserve tangencies and
angles. Specifically, the operation of inversion in a circle E of radius r and center O as
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displayed in Figure 7 is such an operation. The transformation takes p to q as shown,
and one checks that it satisfies the above properties.

E

r

O q p

p        q

where d(p,O) · d(q,O) = r2

Figure 7.

To prove Apollonius’s theorem, let C1, C2, C3 be as shown in Figure 8 and let ξ be
the point of tangency between C1 and C2.

C

C1

C �

C2C3

Figure 8.

Invert Figure 8 in a circle E centered at ξ . Then C1 and C2 are mapped to circles
through infinity, that is, parallel straight lines C̃1 and C̃2, while C3 is mapped to a circle
C̃3 tangent to both as indicated in Figure 9.

C̃2

C̃ C̃3 C̃

C̃1

Figure 9.
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In this configuration, where C̃1 and C̃2 are parallel lines, it is clear that there are
exactly two circles, C̃ � and C̃ , which are mutually tangent to C̃1, C̃2, and C̃3. Hence by
inverting again, Apollonius’s theorem follows.

Descartes’ Theorem. Given four mutually tangent circles whose curvatures are
a1, a2, a3, a4 (with our sign convention), then

F(a1, a2, a3, a4) = 0,

where F is the quadratic form

F(a) = 2a2
1 + 2a2

2 + 2a2
3 + 2a2

4 − (a1 + a2 + a3 + a4)
2.

Proof. Again we employ inversion.
We need a couple of formulae relating the radius of a circle and its inversion in E

of radius k.

Ek

dr

C

Figure 10.

Inverting C in E yields a circle of radius

k2r/(d2 − r 2), (1)

where r is the radius of C and d the distance between the centers of C and E .

E
k

b

Figure 11.

Inverting the straight line � in E yields a circle of radius

k2/2b, (2)

where b is the distance from the center of E to �.
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E

C1
C2

ξ

C4

C3

INVERT IN E

C̃2 y = 1

C̃3 C̃4
(–1,0) (1,0)

C̃1 y = –1

Figure 12.

Now let C1, C2, C3, C4 be our four mutually tangent circles as shown in Figure 12.
Let E be a circle centered at ξ = (x0, y0), the point of tangency of C1 and C2. Inverting
in E we arrive at the configuration C̃1, C̃2, C̃3, C̃4 as shown (after further translation
and rotation and assuming y0 > 1).

Applying (1) and (2) above we find that

r(C3) = k2

x2
0 − 2x0 + y2

0

, r(C4) = k2

x2
0 + 2x0 + y2

0

r(C2) = k2

2(y0 − 1)
, r(C1) = k2

2(y0 + 1)
,

where k is the radius of E . Substituting a(Ci ) = 1/r(Ci ) for i = 1, 3, and 4 and
a(C2) = −1/r(C2), according to our sign convention, in the Descartes form F and
doing some algebraic manipulation yields F(a1, a2, a3, a4) = 0 (see Coxeter [6] for a
further discussion). This proof of Descartes’ theorem is a little unsatisfying in that it
requires some calculation at the end, but it is conceptually simple. That is, the proof is
no more than inversion and keeping track of the quantities under this transformation.

We can now complete our discussion of the packing P0 or any other integral pack-
ing. First, according to Apollonius’s theorem the placement of each circle in each lune
region is unique once we have a starting configuration of three mutually tangent circles
C1, C2, C3. Thus these circles determine the entire packing. Now suppose that these
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starting circles have curvatures a1, a2, a3. Then, according to Descartes’ theorem, if C
and C � are the two circles tangent to C1, C2, C3, then their curvatures a4 and a�

4 satisfy

F(a1, a2, a3, a4) = 0,

F(a1, a2, a3, a�
4) = 0.

�
(3)

Thus a4 and a�
4 are roots of the same quadratic equation, and using the quadratic for-

mula one finds that

a4 + a�
4 = 2a1 + 2a2 + 2a3,

a4, a�
4 = a1 + a2 + a3 ± 2

√�,
(4)

where

� = a1a2 + a1a3 + a2a3. (5)

So for our three coins with curvatures 21, 24, and 28 in Figure 3 we have that � =
1764 = (42)2. Hence a4 and a�

4 are integers, and this is the small coincidence that leads
to P0 being an integral packing. Indeed for a general packing with starting curvatures
a1, a2, a3, the curvatures a4 and a�

4 are expressed in terms of a1, a2, a3, and
√�. Now

starting with these four circles, C1, C2, C3, C4, we get all future circles in the packing
by taking three circles at a time and using the existing fourth mutually tangent circle to
produce another such in the packing. In doing so we don’t need to extract any further
square roots. Thus the curvatures of the entire packing P are expressed as sums of the
quantities a1, a2, a3,

√�, with integer coefficients. In particular, when a1, a2, a3 are
integers and � is a perfect square, the packing is an integral packing. In terms of the
radii r1, r2, r3, which we assume are rational numbers, the further radii of circles in the
packing lie in the field of rationals with

√
(r1 + r2 + r3) r1r2r3 adjoined.

3. THE APOLLONIAN GROUP. A deeper study of an Apollonian packing is fa-
cilitated by introducing the symmetry group A, which is called the Apollonian group.
Given 4 mutually tangent circles in a packing whose curvatures are (a1, a2, a3, a4) ∈
R4 we get 4 new such configurations by taking the 4 subsets of 3 of the 4 original
circles and in each case introducing a new circle in the packing using Apollonius’s
theorem. So if C1, C2, C3, C4 is our starting configuration and we take the subset
C1, C2, C3 and generate C �

4 from C4, we get a new configuration C1, C2, C3, C �
4 in

the packing, with C �
4 being the new circle in the corresponding lune region. According

to (4) the new 4-tuple of curvatures is a� = (a1, a2, a3, a�
4), where in matrix notation

a� = aS4 (6)

and

S4 =





1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 −1



 . (7)

Taking the other subsets of C1, C2, C3, C4 yields

a� = aSj , j = 1, 2, 3,
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with

S1 =





−1 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1



 , S2 =





1 2 0 0
0 −1 0 0
0 2 1 0
0 2 0 1



 , S3 =





1 0 2 0
0 1 2 0
0 0 −1 0
0 0 2 1



 .

(8)

Note that the Sj have integer entries and that

S2
j = I. (9)

Definition. The Apollonian group A is the subgroup of the 4 × 4 integer matrices of
determinant ±1 (GL4(Z)) generated by S1, S2, S3, S4.

The transformations Sj , as well as those generated by them, switch the roots of
one coordinate as in equation (3). So the group A arises from Galois symmetries and
it also acts as a symmetry of the packing. Indeed, according to our discussion above
the 4-tuples of curvatures of mutually tangent circles in a packing P are the orbits
Oa = a · A of A, where a is any such tuple in the packing. If a is integral then so is
any x in Oa , and if a is primitive (that is, its coordinates have no common factor) then
so is every x ∈ Oa .

We assume that our packing P , like P0, is integral, primitive, and bounded (as in
Figure 6). In this case any x ∈ Oa is a primitive integral point, which by Descartes’
theorem lies on the cone V given by

V = {x : F(x) = 0}. (10)

It is clear, and one can check it directly, that

F(x Sj ) = F(x) for x ∈ R4 and j = 1, 2, 3, 4. (11)

Hence

F(xγ ) = F(x) for any x and γ ∈ A. (12)

Let OF be the orthogonal group of F , that is,

OF = {g ∈ GL4 : F(xg) = F(x)}. (13)

OF is an “algebraic group” in that it is defined by algebraic (in this instance quadratic)
equations in (xi j ), i, j = 1, 2, 3, 4. Explicitly it is given by:

X SXt = S, (13�)

where S is the matrix of F , that is,

F(x) = x Sxt .

From (12) we have that

A ≤ OF(Z), (14)

where OF(Z) consists of the matrices in OF whose entries are integers.
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This brings us to the heart of the matter, at least as far as Diophantine properties
of an integral packing are concerned. The group OF(Z) is a much-studied and well-
understood group. It is an “arithmetic” group and as such is central in the arithmetic
theory of quadratic forms (for example in connection with understanding which inte-
gers are represented by an integral quadratic form) and also in automorphic forms. It
is also big, as is demonstrated by the orbit of a primitive integral point x ∈ V prim(Z)
under OF(Z) being all of V prim(Z). The salient features of the Apollonian group A
are:

(i) A is small; it is of infinite index in OF(Z).
(ii) A is not too small; it is Zariski dense in OF .

Statement (i) makes the Diophantine analysis of an integral packing nonstandard in
that the familiar arithmetic tools don’t apply. Statement (ii) says that A is large in the
algebraic geometric sense that any polynomial in the variables xi j (i, j = 1, 2, 3, 4) of
4 × 4 matrices that vanishes on A must also vanish on the complex points of OF . It is
a modest condition on A and it plays a critical role in understanding what A looks like
when reduced in arithmetic modulo q , for q > 1.

An instructive of way of seeing (i) is to consider the orbits of A on V prim(Z). These
correspond to the different integral primitive Apollonian packings, and there are in-
finitely many of them. In [10] it is shown how to use A to find a point v in each
orbit a A called a “root quadruple” which is a reduced element, the definition of re-
duced being that v = (a1, a2, a3, a4) is in V prim(Z) and satisfies a1 + a2 + a3 + a4 > 0,
a1 ≤ 0 ≤ a2 ≤ a3 ≤ a4, and a1 + a2 + a3 ≥ a4. For example, for P0, the reduced v is
(−11, 21, 24, 28). There are infinitely many root quadruples; in fact, one can count
their number asymptotically when they are ordered by the Euclidean norm (see [18]).

4. COUNTING CIRCLES IN A PACKING. In order to investigate the Diophantine
properties of a packing P we need to count the circles in P . There are at least two
useful ways to order the circles:

(α) By the size of the curvature. Let

NP(x) := |{C ∈ P : a(C) ≤ x}|.

(β) Combinatorially by the generation w(C). There are 4 · 3n−2 circles at genera-
tion n; what is their typical curvature?

The answers to these lie in noncommutative harmonic analysis. As to the first, let
δ(P) be the exponent of convergence of the series

�

C∈P

r(C)s . (15)

That is, for s > δ the series converges, while for s < δ it diverges. Clearly δ is at
most 2 since π

�
C∈P r(C)2 is finite (it is twice the area of the circle enclosing P).

On the other hand
�

C∈P r(C) is infinite (see [20] for an elegant proof), and hence
1 ≤ δ(P) ≤ 2. Also δ doesn’t depend on P , since any two packings are equivalent
by a Möbius transformation, that is, a motion of the complex plane C by a conformal
(angle preserving) transformation z → (αz + β)(γ z + η)−1, αη − βγ = 1. So δ =
δ(A) is an invariant of the Apollonian group and it is known to have many equivalent
definitions. It can be estimated: [17] gives δ = 1.30568 . . . . Using elementary methods
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Boyd [3] shows that

lim
x→∞

log NP(x)

log x
= δ. (16)

Very recently Kontorovich and Oh [14] have determined the asymptotics for NP(x).
Their method uses ergodic properties of flows on A\OF(R) and in particular the Lax-
Phillips spectral theory for the Laplacian on the infinite-volume hyperbolic three man-
ifold X = A\OF(R)/K , where K is a maximal compact subgroup of OF(R), as well
as the Patterson-Sullivan theory for the base eigenfunction on X .

Theorem [14]. There is a positive b = b(P) such that

NP(x) ∼ bx δ, as x → ∞.

Numerical calculations [9] indicate that b(P0) = 0.0458 . . . .

As far as (β) goes, Furstenberg’s theory of random products of matrices, in this
case Sj1Sj2 · · · Sjm with jk ∈ {1, 2, 3, 4} and jk �= jk+1 for any k, and in particular
the positivity of the Lyapunov exponent γ associated with such products, dictates the
distribution of the numbers log a(C) with w(C) = m. In fact there is a central limit
theorem [15], which asserts that this distribution has mean γ m and variance of size√

m as m tends to infinity. Here γ = γ (A) ∼= 0.9149 . . . according to Fuchs [8], who
has done some numerical simulation.

5. DIOPHANTINE ANALYSIS. Which integers occur as curvatures of circles C in
an integral packing P? According to the theorem in the last section, the number of
a(C)’s less than x with C ∈ P (counted with multiplicities) is about x δ, and hence one
might expect that a positive proportion of all numbers occur as curvatures. This was
conjectured in [10]. An approach to this conjecture using the subgroups B1, B2, B3, B4,
with B1 = �S2, S3, S4�, etc., was introduced in [19]. The point is that unlike A, Bj is
an arithmetic subgroup of Hj (R), where Hj is the Zariski closure of Bj . In this way
the study of the integer orbits of Bj falls under the realm of the arithmetic theory
of quadratic forms. In particular, one finds that among the curvatures are the values
at integers of various inhomogeneous binary quadratic forms. Very recently Bourgain
and Fuchs have shown that the different forms are highly uncorrelated at certain scales,
and as a consequence they establish:

Theorem [1]. The positive density conjecture is true, that is, the set of curvatures in
an integral Apollonian packing has positive density in all the positive integers.

A much more ambitious conjecture about the set of numbers which are curvatures
is that it should satisfy a local-to-global principle. According to the asymptotics for
NP(x), we have that, on average, a large integer n is hit about nδ−1 times. So if n is
large, one might hope that n is in fact hit unless there is some obvious reason that it
shouldn’t be. The obvious reason is that the n’s that are curvatures satisfy congruence
conditions and these can be studied in detail.

It is here that A being Zariski dense in OF is relevant. There are general theorems
[16] which assert that for groups such as A and q a positive integer having its prime fac-
tors outside a finite set of primes S = S(A), the reduction of A mod q in GL4(Z/qZ)
is the same as that of OF(Z) mod q . While the description of the last is still a bit com-
plicated because orthogonal groups don’t quite satisfy strong approximation (see [4];
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one needs to pass to the spin double cover), it is nevertheless well understood. For the
Apollonian group A, Fuchs [8] has determined the precise image of A in GL4(Z/qZ)
for every q . In particular the “ramified” set S(A) consists of only 2 and 3.

From her characterization one obtains the following important product struc-
ture for the reduced orbits [8]. Let Oa(q) be the reduction of Oa into (Z/qZ)4. If
q = q1q2 with (q1, q2) = 1, then Oa(q) = Oa(q1) × Oa(q2) as subsets of (Z/qZ)4 =
(Z/q1Z)4 × (Z/q2Z)4 (the latter identification coming from the Chinese remainder
theorem). Moreover for p ≥ 5 a prime and e ≥ 1, Oa(pe) = V (Z/peZ)\{0}, that is,
the nonzero points on the Descartes cone in arithmetic mod pe. For p = 2 and 3 this
is not true, but the description of Oa(pe) stabilizes at e = 3 for p = 2 and at e = 1 for
p = 3. With this detailed information about the orbits mod q it is a simple matter to
determine the exact congruence conditions that the curvatures in an integral packing
must satisfy.

For example for the packing P0, the reader might have noticed that

a(C) ≡ 0, 4, 12, 13, 16, 21 (mod 24), (17)

and this is the only congruence restriction. The local-to-global conjecture for P0 (and
a similar conjecture applies to any integral P) is then:

Local-to-Global Conjecture ([10], [9]). Except for finitely many m ≥ 1, every m
satisfying (17) is the curvature of some C ∈ P0.

If the conjecture is true and is proven effectively, then one would have a completely
satisfactory description of the set of curvatures. Fuchs and Sanden [9] have made a de-
tailed numerical study of this local-to-global conjecture. For P0 they list the NP0(108)
circles with curvatures at most 108 and they examine those with 107 ≤ a(C) < 108,
grouping them into each of the six allowed progressions mod 24. For each progression
the distribution of the frequencies with which the numbers are hit is calculated. The
means of these distributions can be determined asymptotically using [8] and [14], and
it is smallest for m ≡ 0 (mod 24) and largest for m ≡ 21 (mod 24); in fact the latter
is double the former. The results of these calculations for these two progressions are
displayed by the histograms in Figures 13 and 14. The number of exceptions, that is,
numbers in [107, 108) which satisfy the congruence but are not curvatures (which is the
frequency of 0 in the histogram), is still sizable for m ≡ 0 (mod 24), while for m ≡ 21
(mod 24) it is the single number 11459805. The reason for the difference is that the
mean for m ≡ 0 (mod 24) is still quite small at 12.41, while for m ≡ 21 (mod 24) it
is 24.86. As x increases, the mean in each progression will be of order x δ−1 and the
frequency of 0 will drop. The local-to-global principle asserts that from some point on
this frequency count doesn’t change, and it appears to be quite plausible. From this
data one might reasonably venture that every m ≡ 21 (mod 24) bigger than 11459805
is a curvature of a circle in P0.

To put this local-to-global conjecture in perspective, consider the same problem
for OF(Z), rather than for A. That is, consider the question of which numbers a are
coordinates of points x ∈ V prim(Z). For a given a this is a question of representing
an integer by a ternary quadratic form. For the form at hand this is not a difficult
problem (every a occurs), but if one were to change the form F , the resulting form in
three variables would be quite general. That is, one is facing the question of a local-
to-global principle (except for finitely many exceptions) for ternary quadratic forms.
This is the most difficult case of Hilbert’s 11th problem, and it has only recently been
settled in general (see [7], [5]). Even there the solution is ineffective and the local-to-
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Figure 14.

global principle needs to be modified beyond the naive congruence obstructions, there
being obstructions coming from the spin group [4, p. 250]. Given this, one should be
cautious about a local-to-global conjecture in the context of the small group A, but
my guess is, something like this is true, and to me this problem is a fundamental and
attractive one.

One can ask which pairs of positive integers are curvatures of circles C1, C2 in
P0 (here and below the pairs C1, C2 are unordered). Again there are some congruence
obstructions, but this time there cannot be a stable (i.e., except for finitely many excep-
tions) local-to-global principle. The reason is that such pairs of circles are too sparse:
Let

N (2)
P (x) = |{C1, C2 ∈ P | C1 is tangent to C2 and a(C1), a(C2) ≤ x}|.

302 c� THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118



In generating the packing, a circle placed at generation n > 1 is tangent to exactly
three circles from previous generations, and its radius is no bigger than any of these
three. From this it follows that

N (2)
P (x) = 3NP(x) − 6, (18)

and this is too small to accommodate even infinitely many local congruence obstruc-
tions.

6. PRIMES. If you are drawn to primes, then on looking at Figure 6 you might have
asked if there are infinitely many circles whose curvatures are prime. Are there in-
finitely many “twin primes,” that is, pairs of tangent circles both of whose curvatures
are prime? The pair near the middle with curvatures 157 and 397 is such a twin. If
these sets are infinite then can one count them asymptotically; is there a “prime num-
ber theorem”?

Theorem [18]. In any primitive integral Apollonian packing there are infinitely many
twin primes, and in particular infinitely many circles whose curvatures are prime.
In fact, the set of points x in an orbit Oa = a · A of a primitive integral point a ∈
V prim(Z) for which at least two of x’s coordinates are prime is Zariski dense in V .

For congruence reasons (even-odd), P0 contains no prime triples, that is, mutually
tangent circles C, C �, C �� all of whose curvatures are prime. The proof of the above
theorem uses the arithmetic subgroups B1, B2, B3, and B4 of A to place the problem
in the ballpark of more standard problems concerning primes. Eventually the half-
dimensional sieve [12] is what is used to produce primes.

We turn to counting these primes and twin primes. What makes this feasible is the
affine linear sieve introduced recently in [2]. This sieve applies to orbits of groups such
as the Apollonian group and it achieves in this context roughly what the sieves of Brun
and Selberg do in the classical setting of the integers. Let

�P(x) = |{C ∈ P : a(C) ≤ x, a(C) prime}|

and define the closely related weighted count

ψP(x) =
�

C∈P
a(C) prime

a(C)≤x

log a(C).

For twin primes set

�
(2)
P (x) =

���C, C � ∈ P | a(C), a(C �) ≤ x, a(C), a(C �) prime, C tangent to C ����

and define the corresponding weighted count

ψ
(2)
P (x) =

�

C,C �∈P
a(C),a(C �)≤x

a(C),a(C �) prime
C tangent to C �

log a(C) log a(C �).

The asymptotics of �P(x) and ψP(x) are related on summing by parts: �P(x) ∼
ψP(x)/ log x as x → ∞. For �

(2)
P (x) and ψ

(2)
P (x) the relation is less clear (γ1 ≤
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�
(2)
P (x)(log x)2/ψ

(2)
P (x) ≤ γ2 for 0 < γ1 < γ2 < ∞ constants) and it is more natu-

ral to consider the weighted sum.
Using the affine sieve and standard heuristics concerning the randomness of the

Möbius function µ(n) and a nontrivial calculation, Fuchs and Sanden [9] formulate a
precise “prime number conjecture”:

Conjecture [9]. For any primitive integral packing P, as x → ∞

ψP(x)

NP(x)
−→ L(2, χ4)

and

ψ
(2)
P (x)

N (2)
P (x)

−→ β,

where the numbers L(2, χ4) and β are

L(2, χ4) =
�

p≡1 (mod 4)

(1 − p−2)−1 ·
�

p≡3 (mod 4)

(1 + p−2)−1 = 0.9159 . . . ,

β = 2
3

·
�

p≡1 (mod 4)

(1 − p−2)−2 ·
�

p≡3 (mod 4)

(1 + p−2)−2 · (1 − 2p(p − 1)−2)

= 0.460 . . . .

These numbers come from a detailed examination of the set Oa(q) and certain
algebraically defined subsets thereof, which eventually leads to the product of the local
densities over primes. It is a pleasant and unexpected feature that the prime and twin
prime constants above don’t depend on the packing P . A numerical check of these
conjectures for P0 with x up to 108 is given in the graphs in Figures 15 and 16. The
graph in Figure 15 is that of ψP(x)/NP(x) against x , and in Figure 16 of ψ

(2)
P (x)/

N (2)
P (x). The agreement with the conjecture is good.

0 2 4 6 8 10
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0.89
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0.92

ψP(x)/NP(x)

L(2,χ4)

x

Figure 15.
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As with the classical sieve the affine linear sieve can be used to prove upper bounds
which are of the “true” order of magnitude.

Theorem [14]. Given a packing P as above, there is constant K depending on P such
that for x ≥ 2,

�P(x) ≤ K
NP(x)

log x

and

�
(2)
P (x) ≤ K

N (2)
P (x)

(log x)2
.

Note that from the refined asymptotics of [14] mentioned in Section 4, it follows
that

�

C∈P

a(C)−δ = ∞.

According to the conjectured “prime number theorem” above we should have that
�

C∈P
a(C) prime

a(C)−δ = ∞.

On the other hand, the upper bound above for twins implies that
�

C,C �∈P
C,C � twin primes

[max(a(C), a(C �))]−δ < ∞.

This is the analogue of Brun’s theorem for the usual twin primes, which says that the
sum of their reciprocals converges.
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There are many ingredients that go into the affine linear sieve and we end by men-
tioning one of them. For q ≥ 1 the reduced orbit Oa(q) can be made into a 4-regular
connected graph by joining ξ in Oa(q) to ξ Sj for j = 1, 2, 3, 4. The key property
proved in [2] is that for q square-free these graphs are an expander family as q −→ ∞
(see [18] and [11] for a definition and properties). This ensures that the random walk
on Oa(q) gotten by moving with one of the Sj at each step is rapidly uniformly mixing,
and this is a critical ingredient in controlling remainder terms in the affine sieve.
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